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Course Announcements.

• Homework set # 10 (the last homework assignment) will be
due on Friday November 30.

• The term paper for this course is due on Friday December 7.
Please remember that the first draft of your paper must be
discussed with the fellows in the writing center. Make sure
you refer to the instructions on the PHY 235 webpages.

• The recording of Wednesday’s lecture was finally made
available on the WEB.
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A QUICK REVIEW OF THE 
MAIN POINTS IN CHAPTER 11.
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Rotating Rigid Bodies

• Rigid body:

• Collection of particles with fixed relative positions, independent of
the motion carried out by the body.

• We assume that the rotating reference frame that can be used
to describe the rotation of the object is fixed to the rigid
body. In this case, each component of the object will be at
rest.

• The kinetic energy of the rigid body will be equal to

vf = V + vr +! ! r = V +! ! r

T =
1
2

mα V2 + 2V ¥ ω × rα{ }+ ω × rα{ }¥ ω × rα{ }( )
α
∑
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Angular Momentum.

• The total angular momentum of a rotating rigid object is the
vector sum of each component of the object:

• Note: L and w are not parallel.
• The total kinetic energy of the system can also be expressed

in terms of the angular momentum:

Li = rα × pα( )i
α
∑ = rα ×mα ω × rα( )( )i

α
∑ = ......= Iijω j

j
∑

Trot =
1
2

Iijω iω j
i, j
∑ = 1

2
ω i Iijω j

j
∑

⎛

⎝⎜
⎞

⎠⎟i
∑ = 1

2
ω iLi

i
∑ = 1

2
ω • L( )
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Use the principal axes of inertia.

• We can simplify the solutions if we can choose our
coordinate axes such that the inertia tensor only has diagonal
elements (principal axesof inertia ):

• Many calculations simplify under these conditions:

I{ } =
I1 0 0
0 I 2 0
0 0 I 3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Li = Iiω i

Trot =
1
2

Iiω i
2

i
∑



Frank L. H. Wolfs Department of Physics and Astronomy, University of Rochester, Slide 7

Euler Angles.
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Euler Angles.
Transformation Matrix.
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Rotation around x3Õ axis.

Rotation around x1ÕÕ axis.

Rotation around x3ÕÕÕ axis.
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Euler Angles.
Angular Velocity.

ω =

ω1

ω 2

ω 3
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Lagrange’s equations for the three Euler 
angles.

• We can obtain a Lagrange’s equation for each Euler angle:

• ! :

• " :

• # :

d
dt

I3ω 3 cosθ{ } = 0

!φ I1ω1 sinψ + I2ω 2 cosψ{ }cosθ − I3ω 3 sinθ( )−
d
dt

I1ω1 cosψ − I2ω 2 sinψ{ } = 0

I1 − I2( )ω1ω 2 − I3 !! 3 = 0 Only equation that contains 
just angular velocities.
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Lagrange’s equations for the three Euler 
angles.

• Since our choice of coordinate axes was arbitrary, we can
find the following relations for the three components of the
angular velocity:

I1 − I2( )ω1ω 2 − I3 !ω 3 = 0

I2 − I3( )! 2! 3 − I1 !ω1 = 0

I3 − I1( )ω 3ω1 − I2 !ω 2 = 0
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3 Minute 37 Second Intermission.

• Since paying attention for 1
hour and 15 minutes is hard
when the topic is physics,
let’s take a 3 minute 37
second intermission.

• You can:
• Stretch out.
• Talk to your neighbors.
• Ask me a quick question.
• Enjoy the fantastic music.
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Problem 11.27

A symmetric body moves
without the influence of
forces or torques. Let x3 be
the symmetry axis of the
body and L be along x3'. The
angle between the angular
velocity vector and x3 is $.
Let %and L initially be in the
x2-x3 plane. What is the
angular velocity of the
symmetry axis about L in
terms of I1, I3, %, and $?
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Prolate and Oblate Rotation.
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External torques: the Euler equations of a 
rigid body in a force field.

• When the external torque is not equal to 0, the angular
momentum of the system is not conserved.

• In this case, we need to use the Euler equations of a rigid
body in a force field:

N1 =
dL1
dt

+ ω × L( )1 =
dL1
dt

+ ω 2L3 −ω 3L2( ) = I1 !ω1 − I2 − I3( )! 2! 3

N2 =
dL2
dt

+ ! × L( )2 =
dL2
dt

+ ω 3L1 −ω1L3( ) = I2 !ω 2 − I3 − I1( )ω 3ω1

N3 =
dL3
dt

+ ω × L( )3 =
dL3
dt

+ ω1L2 −ω 2L1( ) = I3 !ω 3 − I1 − I2( )ω1ω 2
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Symmetric top with external torque.

• For this top, I1 = I2.

• There is a non-zero torque
along the x1 and x2 axes. Note:
the lecture note on page 21
do not include the torque
along thesetwo axes.

• We conclude:

I1 − I2( )ω1ω 2 − I3 !ω 3 = −I3 !ω 3 = 0

ω 3 = constant
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ENOUGH FOR TODAY?


