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Multi-particle systems are complex. They can contain huge number of particles (e.g. a gas at
standard conditions can contain®l@articles). These systems are usually described on a
statistical basis.

Consider the classal picture of a gas:
e Theparticle density distributiors distributed according to thgoltzmann distribution :

n(/)=Ae"""

e The Boltzmann distribution can be used to obtain the Maxwell velocity distribution that
describes the distribution of the speed of the galecules.
e Statistical arguments can be used to describe the behavior of systems with as little as 100
particles.
To obtain the Boltzmann distribution, the F——p },,T
following assumptions are made: 2 T T T T
e All possible configurations occur with
equal probability. b
e Identicalentities are treated as if the'®s
are distinguishable when counting th" 1 -
number of configurations.
The Figure on the right shows the Boltzmar
distribution for a system of constant density
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Quantum mechanics is responsible for théoWing changes to the classical model:

o |If there is an overlap of the wavefunctions of the particles, we have to assume that the
particles are indistinguishable.

o If there is no overlap in the wavefunctions of the particles, we have to assume that they
are dstinguishable and the Boltzmann distribution is valid.

e The results of any calculation cannot depend on the assignment of labels to the particles.

e |If the particles ardermions (spin 1/2, 3/2, E) the total wavefunction must be anti
symmetric.
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If the partides arebosons(spin 0, 1, 2, E) the total wavefunction must be symmetric.

Consider the following examples:

Two bosons in stateg and:
The wavefunction of these two bosons must be symmetric and given by the following
expressions:

v, =5 2y O, )+ v, v, (D} = v,

It is easyto seethat this wavefunctiorsisymmetric under the exchange of particles 1 and
2:

1

v = V2 {y. Dy (2)+ v, (Dv. (2)} = %ﬁ{v/ﬁ(Z)wa(lh%(2)%(1)} =y,

The probability density distribution of the wavefunction is given by

If both boson are in the same state= f, and the probability density distributions
becomes

vy, = %{vf}é D2+ Dy (2 Hw, (Vs (2)+w, (D, (2)} =

1

= Hovvi @2, (W, (2)) = 205 D3 (2w, Wy, (2)

Compare this to the classical model:

Y gasica = ¥ (1) Y (2)

and

WiasicaVaasicas = V5 (W5 (2) w5 (1w, (2) = E(wsws)

quantim

This last relation can be rewritten as
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=2 (Wzlassicall//classical )

quanum

(wevs)

The presence of one boson in {hetate thus increases the possibility to find another
boson in theB state. For 2 particles, the enhancement factor is 2.
e Consider wat happens when we have 3 bosons. In this case, the wavefunction is

:i{wa(l)v/ﬂ(2)wy(3)+wa(l)v/ﬁ(3)wy(2)+wa(Z)wﬁ(3)wy(l)+ }
V=76 v, (2w, v, (3+v, (v, Dy, (2)+v, (3w (2)v, (1)

This wavefunction is symmetric unddret exchange of any two particles. If the three
particles in the same state the wavefunction is equal to

1 {v/ﬁ Wy, (2w, (3 + v, (D, (3w, (2) + v (2w, (3w, (1) + }_

Ve =76 v (2w (v (3)+ ;5 (3w, (v, (2)+ v, (3w, (2w, (O]
=%wﬁ<1>wﬁ(z)wﬁ<3>

The probability density distributiofor this wavefunction is given by

(vave)  =6{w;(Dw; (2w (v, (Dw, (2w, (3)} =3x2x (wiy,)

guanum classical

e Forn patrticles, the following relation can be derived:

1 ) = |(/ | )
(. sTos quantum e\ $* S classical

To summarizevhat we have learned from these examples, define the probability to find the first
Boson in a state to #&. Now consider the probability foxd n bosons in this state:
¢ In the classical model, the probability will be equal to

Prowica =(B) U Priowia =(B) =R (R) =RP

n 17 n,classical

¢ In the quantum model, the probability will be equal to

n+l

Pn,quanrum = nI(Pl)n ' Pn+1,quanrum = (n + 1)I(Pl) - (l’l + 1)P1n|(Pl)n = (l’l + 1) P].Pn,quantum

April 13,2010 Page3 of 15



Physics 237 Notes Chapter 11

Since the probability distributions are different, we do not expect that the Boltzmann distribution
can desribe a quantum systenWhat distribution will be use to describe a quantum system?
Consider a system with two energy levels, as shown in the diagrai : £
the right. The transition ragdetween the two states are: N Ry < )“‘1 2
. &
R, ,: probability per second per particle to
make a transition from state 1 to state 2.
R,, ,: probability per second per particle to

make a transition from state 2 to state 1.

If the system is in equilibrium, ¢hnumber of particles making a transition from state 1 to state 2
must be equal to the number of particles making a transition from state 2 to state 1:

N _ Ry

MR, , =Ry, n R
b 2

If we are considering a classical system the number of particles in each state is distributed
accordng to the Boltzmann distribution:

n = Ag /KT &) . R, _€ " IKT

- kT

n, = Ae 2K % R, €

For a quantum system with boson, the titors probabilities will change but the requirement for
equilibrium will not change:

bosons
bosons __ bosons n 1 _ R2—)l
anIHZ - nZRZHl = —= Rbosons
n, 152

If there aren, bosons in state 1 amg bosons in state 2, the transition probalesitior bosons
will be modified in the following way:

boons _ classical
12 —(1+ nz) 12

bosons _ classical
11 _(1+ nl) b1

The requirement for equilibrium can now be rewritten as

April 13,2010 Paged of 15



Physics 237 Notes Chapter 11

classical " 4 KT
1+n1) U (1'”‘1)9#ﬁ n gH/T n, o T

(
n, (1+n)R=  (1+n,)e?™ 1+n, 1+n,

The lefthand side of the last equation only depends on the properties of state 1 while the right
hand side of the equation only dependstlum properties of state 2. The equation can only be
satisfied if both sides are equal to a constant that does not depend on the properties of states 1
and 2, but may depend on the temperature of the system:

n n _ .
—L 8l = 2 2/ — po% = condant (may beafundion of T')
1+n, 1+n,

Consider first state 1. Using the previaguation we can obtain the following expression for
the number of bosons in state 1:

n KT _ - ~(ac+ey IKT ~(a+ey IKT
1L palkl _ o n=e (a+eg )+l’l1€ (c+e 1KT) -
1+n

e—(a+81/kT) 1

_ 1kT — [kT
I’Ll(l—e (a+e )) — (ce+ey 1KT) = |n = e i) =T
1-e¢ 2 erer” -1

The general expression for the number of besom@ given state is the following:

1
n(e)=——7g—

e’e 1
This distribution is called the Bose
distribution and is schematally shown n
the Figure on the right for three differer
temperatures
When the energy is well beloWT the Bose
distribution  exceeds the  Boltzmanr

distribution since

1 1

nBose(g): eocee/kT _1> eoceelkT

= rlBoltzr'r'ann (8)

At large energiesthe distribution approaches
the shap of the Boltzmann distribution.
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Now corsider that the particles we are dealing with are fermions. Due to the Pauli exclusion
principle, the number of particles in a given state can only be 0 or 1. The transition probabilities
for fermions are related to the classical transition probabilriédse following way:

fermons _ n classical
12 _(1 n2) I2

f;arr;ionsz(lu nl) cl!aslg'cal
When state 1 is occupied, transitions from state 2 to state 1 are not allowed; when state 2 is
occupied, transitions from state 1 to state 2 are not allowkd.requirement for equilibrium can

now be rewritten as

classical V # 1kT
no_ (1! nl)R2" L (1! ”1) e o sur _ My mnr
- (1 | )Rclassical - (1 | ) !V # 1kT 11 e - 11! e
n, - n, o - ny)e - ny - n,

The lefthand side of the last equation only depends on the properties of state 1 while the right
hand side of the equation only depends on the properties of state 2. The equation can only be
satisfied if both sides are equal to a constant that does not deperel mopbrties of states 1

and 2, but may depend on the temperature of the system:

n, e /KT _ n,
I-n I-n,

& /KT __

€ € % = constant (may be a function of T)

Consider first state 1. Using the previous equation we can obtain the following expression for
the number of fermions in state 1:

n, gl/kT

- —e* ¢ n, = e (#+"/KT) ! nle[ (#+ k1) $
N

#+" /KT) 1

!(
| (#+“|/kT) _ (#+ul/k-r) _ e —
n, (l +e )— € $ n = l+e (41 KT) T @ KT

The general expression for the numbgfermions in a given state is the following:

1
n!)=——————
( ) e e./kT +1
This distribution is called thEermi distribution . The constand is usually replaced by another

constant call th&ermi energy. The Fermi energy is defined as
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!, =" #KT

Using the Fermi energy, we can re@rine Fermi distribution as

1
me)= Ty

+1
The Fermi distribution is | a
hematically shown inhe e [
schematically shown in £
Figure on the right for four % l T . T v ™ Tren] =
. 0] =
different temperatures. At oo | —a1

e o

large energies the Fermi §L°
distribution approachesthe
Boltzmann distribution. A
low energies the density

05

appoaches 1well below the 0 1
density associated with the & (&) d & ba,

Boltzmann distribution.

A comparison between the three distributior 15[ \
\ \ ——g=—10
\

discussed so far is shown in the Figure atritplet. an =01
We note the following: 10
)
e All curves converge when becomes small. €

N : . 05
This is not a surprise since when the

Boltzmann occupancy of states is small, tl
Pauli exclusion principle does not play 0
critical role.

e When the Boltzmann occupancy of states is large, the Pauli exclusion principle will have
a significant impact and the three disttions diverge. The Fermi occupancy will
always be less than the Boltzmann occupancy; the Bose occupancy will always be larger
than the Boltzmann occupancy.

e Curves for differentos are shifted ine/kT space. Thex parameter is related to some
charactestic energy scale.
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1$820302(4&H#%(#-5(+,#-%,.(63382%1

The concept ofspecific heat ? 'I UL L AL B L
relates thechange in energy of a 6 -+ GOB + 4 8 RSt L Bl ey
system to the change in itg3[ 2 7]
]
temperature It was found that § ~ -
the specific heat for solids a g3 Eggr, .
room temperature was similar fo ° 2 ‘g’ﬁg}n .
most matdals and equal to 1+ oZn -
| ] | | | | | | | l | | |
dE 0 02 04 06 08 10 12 14 16 18 20 22 24 26 28
C\/:ﬁzgRl 6 cal/mole/K T/0

and consistent with the expected value for ideal gaBlks.observed behavior can be understood
if the system is assumed to consist ouNadtoms, vibrating independently in three dimensions
and assuming that the average kinetiergy iskT.
At low temperatures the specific heat behaves differently:

e At low temperaturesC, varies for different materials.

e At low temperatures;, varies with temperature s,
Einstein tried to account for these observations by proposing thatehegawkinetic energy of
the particles is nkT but hv/(e”v”‘T —1) . There were several problems with this proposal:

e In order to provide reasonable agreement with the data, a different characteristic

frequency is required for each material.
e The proposal cannot accouat the observed® dependence at low temperatures.
The solution to the problem was found by Debi#s solution involved the following steps:
e Assume that the system consists Nf&upled vibrators. In this model the particles are
distinguishable and wean use the Boltzmann distribution function; however, the

particles are strongly interaction, which was not one of the basic assumption that was

made in the derivation of the Boltzmann distribution function.
e For longitudinal vibrations the following relah can be used to determine the number of
states in a small frequency range:

Y
N(/)d/ =——— [2 df
o frequency

velodty
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Debye assumed that there aié, 8ibratorsper mole(N, is AvogadroOs constantThis
requires that there is a limiting frequency. This limitinggirency is defined by the
following requirement:

'T:XN(!)d! =3N,

0
Using the expression fdtf from the previous bullet, we can rewrite this expression as

4y 41'v
# - n?2 d" — 3 - "iax - 3N0 $ nmax —_
v

0o Vv

%9N g
&4/v)

Assuming that the averagmergy of an oscillator is equal m'/(e"”” —1) and that all
frequencies between 0 and the maximfrequency are occupied, we can determine the
energy contained within the system being considered:

”max Y ” max h" 4 A/ . . 4 A/ max 1 . .
= RINC) = g = e

0 v’

In order to solve this integral we introduce the variabMere

hv kT kT
xX=— = V=—ux = dv=—-udx
kT h h

The energy of the system can be rewritten in ternxs of

41v 1 #kT & KT 41V HKT & ™™ x3

E= 7 h) x--l%'_x( —dx=— hg—( )

where
* kT_Imax
_h,  _ h _#9N,&" ) o X,
_— . —— +
max = g e = e ey ( A 3#9NO&) 4"V _9N,
, max 04::‘/( v3 _,3

The energycan thus be rewritten as
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4
N "! 0/ Xax 3 "! (y n 1 (Vixmax 3
E :9%0h§ﬂlo ) XX dX:9NO§ T, ﬁ -0) XX dx =
!£nax Xmax& 0 e ( 1 Xmax& Xmax& 0 e ( 1
11} 0 Xmax 3 XTHBX 3
= 9N, k—Té‘h ! ) <7 dx=9RT ! )
hé& x. §e(l Xoux 4 € (1
Thecharacteristic temperature of the system is defined as
h" h hk !
| = max 4 =" =——] =—
K Y Y N

In terms of this temperature, we can rewrite the energy of the system as

4 \6/T 3
E=9R[T Jj X dx

6 . €—1

e The system energy we just calculated can be used to determine the heat capacity by
differentiating it with respect to:

dE d (T «° T*\OITY( 6
C,=— =9R{| —| — —~ dx+| — S |
Yodr {[dT[Wﬂ;[ex—l e eO’T—l( sz

°\7 & o 1
=9R{4(?] P L

0

At low T the integral approaches/15 and the first term provides the observiéd
dependence of the heat capacity.

An important application of quantum statisticsthe laser To understand the operation of a

laser we need to understand the process of emission and absorption. The emission process is a
quantum effect; fluctuations are requir® produce the emission since OpureO eigenfunctions do
not overlap. The mean lifetime of excited states in atoms is 4b8iseconds. Some states, the
so-calledmetastable stateshave a much longer lifetime.

Consider an atom with two states: the ground state and a first excited state. If we examine a
collection of atoms at a given temperature we find that a numbdomsawill be in the first

excited state. If the system is in equilibrium, the number of atbatsemis a photonis the
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same as the number of atoms that absork P i Alter
photon. For th@bsorption processwe note the SPemaneaus i
following: é @ *
e The absorbed photon must have tt
correct energyv. &, -

e The number of transitions is proportione *yreeston

to the energy densii(v).
e The transition rate for absorption is equi

1 O

(%)

to R_,=B,p(v) where B, is the & ——o

i i i i Stimulated NN~ NN
matrix element that includes information >{rL 0 e
on the properties of the states involved é *

. (c)
the transition.

The emission processnvolves two processespontaneous emissioandstimulated emission

The rate of spontaneis emission only depends onmatrix elementonnecting the two states.

The rate of spontaneous emission depends on both a matrix elemémtltigEs information on

the properties of the states involved in the transition and on the energy density. The total
emission rate is equal to

R, 1 =An+ 321P(V)
If the system is in equilibrium we must require that
MR, =m,R, 1 = mBLP(V)=nyAy +n,Byp(v)

This equation can be used to determine the energy desjty

p(V) _ n2A21 _ AQ:L _ AQZL/BZl

n
#(Blz / B21)_]-

2

Al By _ Al By A By

(BIZ / BZl):__Z//l::_l_ (BlZ / BZl)e(gz—Sl)/kT _1_ (Blz / 821)ehv/kT -1

nB,-n,B, n B, - B,;
n,

But the energy density associated with the external radiation field must be consgitbtdrtack
body radiation. We thus must require that
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/()= Ayl By _8%n"® 1
' (B, /By)e" ™ #1 & M4l

This requires that

A, 8mhv’
B,, c’
B

12

BZ]

We can now estimate the ratio of spontaneous emission to stimulated emission. This ratio is
equal to
A A . .
21” — 21 . :(Blz/le)eh/kT#lzeh /kT#l
B21! ( ) $ A21 /le
21 %312 /le)eh”/kT #Q

This equation shows that stimulated emission becomes important whek7 . Stimulated
emission dominates whdmn ! KT .
The ratio of emission to absorption is equal to

nA, +n,B,/ (") _#n, &) A, + B, :#nz &{eh"/kT/ 1+1} :& h" /KT n,

= = 4= e =
nlBIZ',( ) %chl(+BIZ',( ) B12. %%1( n hvt kT 1y
This relation shows that if we car & === Short-lived state
. . . Spontaneous decay
create apopulation inversion (n, >> o
o ] ) &2 Metastable state
n,) then emissio will dominate
absorption. In a lasera population ,
version 4 by ootical UMDIN o w~ | Stimuated
inversion is creat [ mpin 2 on.
ersion is create yop_ca pu p B s R
of atoms to a state that is short live
and decays to a metastable state. TI & Ground state
is schematically shown in the energ Coiled famp partly
i i i transparent
diagram on the righthand side. mirror 2

The blackbody frequency distribution
is consistent with viewing the photon:
as aphoton gas Since photons have
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spin 1, they are bosons and their properties are governed by the Bose distribution:

1
e e #1

n(/)=

Since photons can be created and destiotfee energy integral of the Bose distribution can
change. Since the constax is related to the total number of particles the system contains, we
must conclude that for a photon gas, there can be no dependeman @f. The number of
photons in a sta of energye = hv is thus equal to

1
”(-’):W

If N(e&)de is the number of quantum states with an energy betwesrd de, the number of
photons with an energy betweeandde is equal ton(g)N(&)de. Since each photon carries an
energye, the total photon energy betweenand de is equal to!/n(!)N(/)d/. Using the
expression we obtained in Chapter 1 féfe)de we can now determine the energy densit
the photon gas per unit volume:

1 j 871V e’de
¢ hn _ 8=m e’de
V V - C3h3 e&‘/kT _1

Since € = hv, we can convert the energy density from the function of energy to a function of
frequency:

n

L\ — d# 8% h*"*hd" _8.‘,7>‘"2 h"
: ( )d - (#)F - R’ eh“/kT %l - o3 eh“/kT %1

The frequency distribution of the piom gas is thus given by

which is the blackbody distribution.

A Bose condensatés system consisting out of bosons for which the total number of particles is
constant. This requirement differentiates a Bose condensateHeophéton gas. If we have a
Bose condensate witl particles, we can write the energy distribution of these particles as
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1

R

The constantx is fixed by requiring that

+
1 4&v(2m3)uz!1,20”:(2c§irnl;T)3/2Ve%z Lo, )

N=h(IIN()ar = 4 1+ S5

. ) : b AHKT o 3 3/2 )

o ,ee’™ vl h h 2 )
Densty of statesin sgaure well Classical distributon for Correction -

classica ocillators.
The factore " is thus proportional tdl. To first approximation:

W« NB® _ 1
e = 32 = ”(8 = 32

(2mmkT)™"V (2mmkT)” "V
Ni®

IKT
et —1

The average energy per boson is equal to

T T T 1 4nV 172
Jen(e)N(s)de gen(e)N(e)de -(!.e"‘ee“‘T—l o (2m®) " de

° T N B " 2ankT)” 1 )
Jn(e)N(e)de Ve‘“{1+2e‘“+...}
0

h3 3/2

3/2
MV@“ (;kTJ{I + 21e‘°‘ + } 3
kT

h3 5/2

1 1
T 2amkT)” 1 "2 (Hﬁeaj(l_ﬁea]:
Ve‘“{ }

3 1+2—e“"+...

3/2

3 o1y, 1 ) 3 o
:EkT(“_(fT_Wje —2—492 jzakT 1- Fe

Deviation from
the classical gas

We thus conclude that the average energy of a boson is less than the energy of a classical gas
molecde. The pressure of a boson gas is thus lower than the corresponding pressure of a
classical gas. The effect of the correction (the second term in the expression of the average
energy) shows up for low, low T, and highN/V.
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If instead of dealing witlbosons we deal with fermions, we can use a similar calculation to the
one calculation of the boson gas to determine the average energy of the fermions in the Fermi
gas. For the Fermi gas we find

_ 1
€= §kT 1+ —€e*
2 n
»
Deviation from

theclassical gas

We note that for a Fermi gasetlaverage energy exceeds the average energy of a classical gas.
As a result, the pressure of a Fermi gas is higher than that of a classical gas.

An example of a Fermi gas idr@e-electron gas A free-electron gas shows up in solids in the
form of condwtion electrons. The Fermi energy of these electrons is

2, 2/3
1= pkr = PN
SM&$V)

The Fermienergy of a silver atom is about 5.5 e¥\t a temperature of 4 10* K, the Fermi
energy is equal tkT. At temperatures below 1®, kT is much less than the Fermi energy and
the electron occupancy distribution can be described by a step function. At tempeabhtwe
10 K, thedistributionfunction can be described by an exponential fall off.
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