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Multi -particle systems are complex.  They can contain huge number of particles (e.g. a gas at 

standard conditions can contain 1022 particles).  These systems are usually described on a 

statistical basis. 

 

Consider the classical picture of a gas: 

• The particle density distribution is distributed according to the Boltzmann distribution : 
 

n !( ) = Ae" ! /kT  
 

• The Boltzmann distribution can be used to obtain the Maxwell velocity distribution that 

describes the distribution of the speed of the gas molecules. 

• Statistical arguments can be used to describe the behavior of systems with as little as 100 

particles. 

To obtain the Boltzmann distribution, the 

following assumptions are made: 

• All possible configurations occur with 

equal probability. 

• Identical entities are treated as if they 

are distinguishable when counting the 

number of configurations. 

The Figure on the right shows the Boltzmann 

distribution for a system of constant density at 

various temperatures. 

 

Quantum mechanics is responsible for the following changes to the classical model: 

• If there is an overlap of the wavefunctions of the particles, we have to assume that the 

particles are indistinguishable. 

• If there is no overlap in the wavefunctions of the particles, we have to assume that they 

are distinguishable and the Boltzmann distribution is valid. 

• The results of any calculation cannot depend on the assignment of labels to the particles. 

• If the particles are fermions (spin 1/2, 3/2, É) the total wavefunction must be anti-

symmetric. 
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• If the particles are bosons (spin 0, 1, 2, É) the total wavefunction must be symmetric. 

 

Consider the following examples: 

• Two bosons in states α and β: 

The wavefunction of these two bosons must be symmetric and given by the following 

expressions: 
 

ψ s =
1
2

2 ψα 1( )ψβ 2( ) +ψβ 1( )ψα 2( ){ } =ψ12  

 

It is easy to see that this wavefunction is symmetric under the exchange of particles 1 and 

2: 
 

ψ 12 =
1
2
2 ψα 1( )ψβ 2( ) +ψβ 1( )ψα 2( ){ } = 12 2 ψβ 2( )ψα 1( ) +ψα 2( )ψβ 1( ){ } =ψ 21  

 

The probability density distribution of the wavefunction is given by 
 

! s
"! s =

1
2

! #
" 1( )! $

" 2( ) +! $
" 1( )! #

" 2( ){ } ! # 1( )! $ 2( ) +! $ 1( )! # 2( ){ }  

 

If both boson are in the same state, α = β, and the probability density distributions 

becomes 
 

ψ s
∗ψ s =

1
2

ψβ
∗ 1( )ψβ

∗ 2( ) +ψβ
∗ 1( )ψβ

∗ 2( ){ } ψβ 1( )ψβ 2( ) +ψβ 1( )ψβ 2( ){ } =
=

1
2

2ψβ
∗ 1( )ψβ

∗ 2( ){ } 2ψβ 1( )ψβ 2( ){ } = 2ψβ
∗ 1( )ψβ

∗ 2( )ψβ 1( )ψβ 2( )
 

 

Compare this to the classical model: 
 

ψ classical =ψβ 1( )ψβ 2( )  

 

and  
 

ψ classical
∗ ψ classical =ψβ

∗ 1( )ψβ
∗ 2( )ψβ 1( )ψβ 2( ) = 1

2
ψ s

∗ψ s( )
quantum

 

 

This last relation can be rewritten as 
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ψ s

∗ψ s( )
quantum

= 2 ψ classical
∗ ψ classical( )  

 

The presence of one boson in the β state thus increases the possibility to find another 

boson in the β state.  For 2 particles, the enhancement factor is 2. 

• Consider what happens when we have 3 bosons.  In this case, the wavefunction is 
 

ψ s =
1

6

ψα 1( )ψβ 2( )ψγ 3( ) +ψα 1( )ψβ 3( )ψγ 2( ) +ψα 2( )ψβ 3( )ψγ 1( ) +
ψα 2( )ψβ 1( )ψγ 3( ) +ψα 3( )ψβ 1( )ψγ 2( ) +ψα 3( )ψβ 2( )ψγ 1( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 

 

This wavefunction is symmetric under the exchange of any two particles.  If the three 

particles in the same state the wavefunction is equal to 
 

ψ s =
1

6

ψβ 1( )ψβ 2( )ψβ 3( ) +ψβ 1( )ψβ 3( )ψβ 2( ) +ψβ 2( )ψβ 3( )ψβ 1( ) +
ψβ 2( )ψβ 1( )ψβ 3( ) +ψβ 3( )ψβ 1( )ψβ 2( ) +ψβ 3( )ψβ 2( )ψβ 1( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

=
6

6
ψβ 1( )ψβ 2( )ψβ 3( )

 

 

The probability density distribution for this wavefunction is given by 
 

ψ s
∗ψ s( )

quantum
= 6 ψβ

∗ 1( )ψβ
∗ 2( )ψβ

∗ 3( )ψβ 1( )ψβ 2( )ψβ 3( ){ } = 3× 2× ψ s
∗ψ s( )

classical
 

 

• For n particles, the following relation can be derived: 
 

! s
"! s( )quantum = n! ! s

"! s( )classical  
 

To summarize what we have learned from these examples, define the probability to find the first 

Boson in a state to be P1.  Now consider the probability to find n bosons in this state: 

• In the classical model, the probability will be equal to 
 

Pn,classical = P1( )n ! Pn+1,classical = P1( )n+1
= P1 P1( )n = P1Pn,classical  

 

• In the quantum model, the probability will be equal to 
 

Pn,quantum = n! P1( )n ! Pn+1,quantum = n +1( )! P1( )n+1
= n +1( )P1n! P1( )n = n +1( )P1Pn,quantum  
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Since the probability distributions are different, we do not expect that the Boltzmann distribution 

can describe a quantum system.  What distribution will be use to describe a quantum system? 

 

Consider a system with two energy levels, as shown in the diagram on 

the right.  The transition rates between the two states are: 
 

R1! 2 : probability per second per particle to 
make a transition from state 1 to state 2.

R2! 1 : probability per second per particle to 
make a transition from state 2 to state 1.

 

 

If the system is in equilibrium, the number of particles making a transition from state 1 to state 2 

must be equal to the number of particles making a transition from state 2 to state 1: 
 

n1R1! 2 = n2R2! 1 "
n1

n2

=
R2! 1

R1! 2

 

 

If we are considering a classical system the number of particles in each state is distributed 

according to the Boltzmann distribution: 
 

n1 = Ae! "1 /kT

n2 = Ae! " 2 /kT

#
$
%

&%
'

R2( 1

R1( 2

=
e! "1 /kT

e! " 2 /kT  

 

For a quantum system with boson, the transition probabilities will change but the requirement for 

equilibrium will not change: 
 

n1R1→2
bosons = n2R2→1

bosons ⇒
n1
n2

=
R2→1
bosons

R1→2
bosons  

 

If there are n1 bosons in state 1 and n2 bosons in state 2, the transition probabilities for bosons 

will be modified in the following way: 
 

R1! 2
bosons = 1+ n2( )R1! 2

classical

R2! 1
bosons = 1+ n1( )R2! 1

classical
 

 

The requirement for equilibrium can now be rewritten as 
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n1
n2

=
1+ n1( )R2! 1

classical

1+ n2( )R2! 1
classical =

1+ n1( )
1+ n2( )

e" #1 /kT

e" #2 /kT $
n1

1+ n1
e#1 /kT =

n2
1+ n2

e#2 /kT  

 

The left-hand side of the last equation only depends on the properties of state 1 while the right-

hand side of the equation only depends on the properties of state 2.  The equation can only be 

satisfied if both sides are equal to a constant that does not depend on the properties of states 1 

and 2, but may depend on the temperature of the system: 
 

n1

1+ n1

eε1 /kT =
n2

1+ n2

eε2 /kT = e−α = constant (may be a function of T )  

 

Consider first state 1.  Using the previous equation we can obtain the following expression for 

the number of bosons in state 1: 
 

n1

1+ n1

eε1 /kT = e−α ⇒ n1 = e
− α +ε1 /kT( ) + n1e

− α +ε1 /kT( ) ⇒

n1 1− e− α +ε1 /kT( )( ) = e− α +ε1 /kT( ) ⇒ n1 =
e− α +ε1 /kT( )

1− e− α +ε1 /kT( ) =
1

eαeε1 /kT −1

 

 

The general expression for the number of bosons in a given state is the following: 
 

n ε( ) = 1
eαeε /kT −1

 

 

This distribution is called the Bose 

distribution  and is schematically shown in 

the Figure on the right for three different 

temperatures. 

When the energy is well below kT the Bose 

distribution exceeds the Boltzmann 

distribution since 
 

nBose ε( ) = 1
eαeε /kT −1

>
1

eαeε /kT = nBoltzmann ε( )  
 

At large energies, the distribution approaches 

the shape of the Boltzmann distribution. 
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Now consider that the particles we are dealing with are fermions.  Due to the Pauli exclusion 

principle, the number of particles in a given state can only be 0 or 1.  The transition probabilities 

for fermions are related to the classical transition probabilities in the following way: 
 

R1! 2
fermions = 1 " n2( )R1! 2

classical

R2! 1
fermions = 1 " n1( )R2! 1

classical
 

 

When state 1 is occupied, transitions from state 2 to state 1 are not allowed; when state 2 is 

occupied, transitions from state 1 to state 2 are not allowed.  The requirement for equilibrium can 

now be rewritten as 
 

n1
n2

=
1 ! n1( )R2" 1

classical

1 ! n2( )R2" 1
classical =

1 ! n1( )
1 ! n2( )

e! #1 /kT

e! #2 /kT
$

n1
1 ! n1

e#1 /kT =
n2

1 ! n2
e#2 /kT  

 

The left-hand side of the last equation only depends on the properties of state 1 while the right-

hand side of the equation only depends on the properties of state 2.  The equation can only be 

satisfied if both sides are equal to a constant that does not depend on the properties of states 1 

and 2, but may depend on the temperature of the system: 
 

n1

1− n1

eε1 /kT =
n2

1− n2

eε2 /kT = e−α = constant (may be a function of T )  

 

Consider first state 1.  Using the previous equation we can obtain the following expression for 

the number of fermions in state 1: 
 

n1
1 ! n1

e"1 /kT = e! # $ n1 = e! # +"1 /kT( ) ! n1e
! # +"1 /kT( ) $

n1 1+ e! # +"1 /kT( )( ) = e! # +"1 /kT( ) $ n1 =
e! # +"1 /kT( )

1+ e! # +"1 /kT( ) =
1

e# e"1 /kT +1

 

 

The general expression for the number of fermions in a given state is the following: 
 

n !( ) =
1

e" e! /kT +1
 

 

This distribution is called the Fermi distribution .  The constant α is usually replaced by another 

constant call the Fermi energy.  The Fermi energy is defined as 
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! f = " # kT  

 
Using the Fermi energy, we can rewrite the Fermi distribution as 

 

n ε( ) = 1

e ε −ε f( )/kT +1
 

 

The Fermi distribution is 

schematically shown in the 

Figure on the right for four 

different temperatures.  At 

large energies, the Fermi 

distribution approaches the 

Boltzmann distribution.  At 

low energies, the density 

approaches 1, well below the 

density associated with the 

Boltzmann distribution. 

A comparison between the three distributions 

discussed so far is shown in the Figure at the right.  

We note the following: 

• All curves converge when n becomes small.  

This is not a surprise since when the 

Boltzmann occupancy of states is small, the 

Pauli exclusion principle does not play a 

critical role. 

• When the Boltzmann occupancy of states is large, the Pauli exclusion principle will have 

a significant impact and the three distributions diverge.  The Fermi occupancy will 

always be less than the Boltzmann occupancy; the Bose occupancy will always be larger 

than the Boltzmann occupancy. 

• Curves for different αs are shifted in ε/kT space.  The α parameter is related to some 

characteristic energy scale. 
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The concept of specific heat, 

relates the change in energy of a 

system to the change in its 

temperature.  It was found that 

the specific heat for solids at 

room temperature was similar for 

most materials and equal to  
 

 
CV =

dE
dT

= 3R! 6 cal/mole/K  

 

and consistent with the expected value for ideal gases.  The observed behavior can be understood 

if the system is assumed to consist out of N atoms, vibrating independently in three dimensions 

and assuming that the average kinetic energy is kT. 

At low temperatures the specific heat behaves differently: 

• At low temperatures, CV varies for different materials. 

• At low temperatures, CV varies with temperature as T3. 

Einstein tried to account for these observations by proposing that the average kinetic energy of 

the particles is not kT but hν / ehν /kT −1( ) .  There were several problems with this proposal: 

• In order to provide reasonable agreement with the data, a different characteristic 

frequency is required for each material. 

• The proposal cannot account for the observed T3 dependence at low temperatures. 

The solution to the problem was found by Debye.  His solution involved the following steps: 

• Assume that the system consists of 3N coupled vibrators.  In this model the particles are 

distinguishable and we can use the Boltzmann distribution function; however, the 

particles are strongly interaction, which was not one of the basic assumption that was 

made in the derivation of the Boltzmann distribution function. 

• For longitudinal vibrations the following relation can be used to determine the number of 

states in a small frequency range: 
 

 

N !( )d! =
4" V

volume

v3

velocity


! 2

frequency
 d!  
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• Debye assumed that there are 3N0 vibrators per mole (N0 is AvogadroÕs constant).  This 

requires that there is a limiting frequency.  This limiting frequency is defined by the 

following requirement: 
 

N !( )d!
0

! max

" = 3N0  

 

Using the expression for N from the previous bullet, we can rewrite this expression as 
 

4! V
v3

" 2 d"
0

" max

# =
4! V
3v3

" max
3 = 3N0 $ " max = v 9N0

4! V
%
&'

(
)*

1/3

 

 

• Assuming that the average energy of an oscillator is equal to hν / ehν /kT −1( )  and that all 

frequencies between 0 and the maximum frequency are occupied, we can determine the 

energy contained within the system being considered: 
 

E = ! N "( )d"
0

" max

# =
h"

eh" /kT $1
4%V
v3

" 2 d" =
4%V
v3

h
1

eh" /kT $1
" 3 d"

0

" max

#
0

" max

#  

 

In order to solve this integral we introduce the variable x where 
 

x = hν
kT

⇒ ν =
kT
h
x ⇒ dν =

kT
h
dx  

 

The energy of the system can be rewritten in terms of x: 
 

E =
4! V
v3

h
1

ex " 1
kT
h

x#
$%

&
'(

3 kT
h

dx
0

xmax

) =
4! V
v3

h
kT
h

#
$%

&
'(

4 x3

ex " 1
dx

0

xmax

)  

 

where 
 

xmax =
h
kT

! max =
h
kT

v 9N0

4" V
#
$%

&
'(

1/3

)

kT
h

=
! max
xmax

! max
3 = v3 9N0

4" V
#
$%

&
'(

)
4" V
v3

=
9N0

! max
3

*

+

,
,

-

,
,

 

 

The energy can thus be rewritten as 
 



Physics 237  Notes Chapter 11 

   
April  13, 2010  Page 10 of 15 

E =
9N0

! max
3 h

! max
xmax

"

#$
%

&'

4
x3

ex ( 1
dx

0

xmax

) = 9N0
! max
xmax

"

#$
%

&'
h

1
xmax

"

#$
%

&'

3
x3

ex ( 1
dx

0

xmax

) =

= 9N0
kT
h

"
#$

%
&'

h
1

xmax
3

x3

ex ( 1
dx

0

xmax

) = 9RT
1

xmax
3

x3

ex ( 1
dx

0

xmax

)
 

 

The characteristic temperature of the system is defined as 
 

! =
h" max

k
# xmax =

h
kT

" max =
h

kT
k
h

! =
!
T

 

 

In terms of this temperature, we can rewrite the energy of the system as 
 

E = 9R
T 4

θ 3
⎛
⎝⎜

⎞
⎠⎟

x3

ex −1
dx

0

θ /T

∫  

 

• The system energy we just calculated can be used to determine the heat capacity by 

differentiating it with respect to T: 
 

CV =
dE
dT

= 9R d
dT

T 4

θ 3

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

x3

ex −1
dx

0

θ /T

∫ +
T 4

θ 3

⎛
⎝⎜

⎞
⎠⎟
θ /T( )3

eθ /T −1
−
θ
T 2

⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
=

= 9R 4
T 3

θ 3

⎛
⎝⎜

⎞
⎠⎟

x3

ex −1
dx − θ

T
1

eθ /T −10

θ /T

∫
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

 

 

At low T the integral approaches !4/15 and the first term provides the observed T3 

dependence of the heat capacity. 

 

An important application of quantum statistics is the laser.  To understand the operation of a 

laser, we need to understand the process of emission and absorption.  The emission process is a 

quantum effect; fluctuations are required to produce the emission since ÒpureÓ eigenfunctions do 

not overlap.  The mean lifetime of excited states in atoms is about 10-8 seconds.  Some states, the 

so-called metastable states, have a much longer lifetime.   

Consider an atom with two states: the ground state and a first excited state.  If we examine a 

collection of atoms at a given temperature we find that a number of atoms will be in the first 

excited state.  If the system is in equilibrium, the number of atoms that emits a photon is the 
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same as the number of atoms that absorb a 

photon.  For the absorption process we note the 

following: 

• The absorbed photon must have the 

correct energy hν. 

• The number of transitions is proportional 

to the energy density ρ(ν). 

• The transition rate for absorption is equal 

to R1→2 = B12ρ ν( )  where B12  is the 

matrix element that includes information 

on the properties of the states involved in 

the transition. 

The emission process involves two processes: spontaneous emission and stimulated emission.  

The rate of spontaneous emission only depends on a matrix element connecting the two states.  

The rate of spontaneous emission depends on both a matrix element that includes information on 

the properties of the states involved in the transition and on the energy density.  The total 

emission rate is equal to 
 

R2→1 = A21 + B21ρ ν( )  
 

If the system is in equilibrium we must require that 
 

n1R1→2 = n2R2→1 ⇒ n1B12ρ ν( ) = n2A21 + n2B21ρ ν( )  
 

This equation can be used to determine the energy density ρ(ν): 
 

ρ ν( ) =
n2A21

n1B12 − n2B21

=
A21

n1

n2

B12 − B21

=
A21 / B21

n1

n2

B12 / B21( ) −1
=

=
A21 / B21

B12 / B21( ) e−ε1 /kT

e−ε2 /kT −1
=

A21 / B21

B12 / B21( )e ε2 −ε1( )/kT −1
=

A21 / B21

B12 / B21( )ehν /kT −1

 

 

But the energy density associated with the external radiation field must be consistent with black-

body radiation.  We thus must require that 
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! "( ) =
A21 / B21

B12 / B21( )eh" /kT #1
=

8$h" 3

c3

1
eh" /kT #1

 

 

This requires that 
 

A21
B21

=
8πhν 3

c3

B12
B21

= 1
 

 

We can now estimate the ratio of spontaneous emission to stimulated emission.  This ratio is 

equal to 
 

A21
B21! "( )

=
A21

B21
A21 / B21

B12 / B21( )eh" /kT #1
$

%&
'

()

= B12 / B21( )eh" /kT #1= eh" /kT #1  

 

This equation shows that stimulated emission becomes important when h! " kT .  Stimulated 

emission dominates when  h! ! kT . 

The ratio of emission to absorption is equal to 
 

 

n2A21 + n2B21! "( )
n1B12! "( )

=
n2
n1

#

$%
&

'(
A21

B12! "( )
+

B21
B12

)
*
+

,
-
.

=
n2
n1

#

$%
&

'(
eh" /kT / 1+1{ } =

n2
n1

eh" /kT =
hv! kT

"
n2
n1

 

 

This relation shows that if we can 

create a population inversion (n2 >> 

n1) then emission will dominate 

absorption.  In a laser, a population 

inversion is created by optical pumping 

of atoms to a state that is short lived 

and decays to a metastable state.  This 

is schematically shown in the energy 

diagram on the right-hand side. 

 

The black-body frequency distribution 

is consistent with viewing the photons 

as a photon gas.  Since photons have 
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spin 1, they are bosons and their properties are governed by the Bose distribution: 
 

n !( ) =
1

e" e! /kT #1
 

 

Since photons can be created and destroyed, the energy integral of the Bose distribution can 

change.  Since the constant α is related to the total number of particles the system contains, we 

must conclude that for a photon gas, there can be no dependence of n on α.  The number of 

photons in a state of energy ε = hν  is thus equal to 
 

n !( ) =
1

e! /kT " 1
 

 

If N ε( )dε  is the number of quantum states with an energy between ε and dε, the number of 

photons with an energy between ε and dε is equal to n ε( )N ε( )dε .  Since each photon carries an 

energy ε, the total photon energy between ε and dε is equal to ! n !( )N !( )d! .  Using the 

expression we obtained in Chapter 1 for N ε( )dε  we can now determine the energy density of 

the photon gas per unit volume: 
 

ρ ε( )dε = ε n ε( )N ε( )dε
V

=
ε 1

eε /kT −1
⎛
⎝⎜

⎞
⎠⎟
8πV
c3

ε 2dε
h3

⎛
⎝⎜

⎞
⎠⎟

V
=
8π

c3h3
ε 3dε

eε /kT −1
 

 

Since ε = hν , we can convert the energy density from the function of energy to a function of 

frequency: 
 

! "( )d" = ! #( ) d#
h

=
8$

c3h3
h3" 3hd"
eh" /kT %1

=
8$" 2

c3
h"

eh" /kT %1
d"  

 

The frequency distribution of the photon gas is thus given by 
 

ρ ν( ) = 8πν
2

c3
hν

ehν /kT −1
 

 

which is the black-body distribution. 

 

A Bose condensate is system consisting out of bosons for which the total number of particles is 

constant.  This requirement differentiates a Bose condensate from the photon gas.  If we have a 

Bose condensate with N particles, we can write the energy distribution of these particles as 
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n ε( ) = 1
eαeε /kT −1

 

 

The constant α is fixed by requiring that 
 

 

N = n !( )N !( )d!
0

"

# =
1

e$ e! /kT %1
4&V
h3 2m3( )1/2

! 1/2d!

Density of states in sqaure well
  0

"

# =
2&mkT( )3/2

h3 Ve%$

Classical distribution for
classical oscillators.

  
1+

1
23/2 e%$

Correction
 

+ ...

'

(
)

*
)

+

,
)

-
)

 

 

The factor e! "  is thus proportional to N.  To first approximation: 
 

e−α =
Nh3

2πmkT( )3/2V
⇒ n ε( ) = 1

2πmkT( )3/2V
Nh3 eε /kT −1

 

 

The average energy per boson is equal to 
 

 

ε =
εn ε( )N ε( )dε

0

∞

∫
N

=
εn ε( )N ε( )dε

0

∞

∫

n ε( )N ε( )dε
0

∞

∫
=

1
eαeε /kT −1

4πV
h3 2m3( )1/2

ε 3/2 dε
0

∞

∫
2πmkT( )3/2

h3 Ve−α 1+ 1
23/2 e−α + ...{ }
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We thus conclude that the average energy of a boson is less than the energy of a classical gas 

molecule.  The pressure of a boson gas is thus lower than the corresponding pressure of a 

classical gas.  The effect of the correction (the second term in the expression of the average 

energy) shows up for low m, low T, and high N/V. 
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If instead of dealing with bosons we deal with fermions, we can use a similar calculation to the 

one calculation of the boson gas to determine the average energy of the fermions in the Fermi 

gas.  For the Fermi gas we find 
 

 

ε =
3
2

kT 1+
1

25/2 e−α

Deviation from
the classical gas
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⎟
⎟

 

 

We note that for a Fermi gas the average energy exceeds the average energy of a classical gas.  

As a result, the pressure of a Fermi gas is higher than that of a classical gas. 

An example of a Fermi gas is a free-electron gas.  A free-electron gas shows up in solids in the 

form of conduction electrons.  The Fermi energy of these electrons is 
 

! fermi = " # kT =
h2

8m
3N
$V

%
&'

(
)*

2 /3

 

 

The Fermi energy of a silver atom is about 5.5 eV.  At a temperature of 4 "  104 K, the Fermi 

energy is equal to kT.  At temperatures below 104 K, kT is much less than the Fermi energy and 

the electron occupancy distribution can be described by a step function.  At temperatures above 

105 K, the distribution function can be described by an exponential fall off. 

 


